Fabrication and electroosmotic flow measurements in micro- and nanofluidic channels
ثبت نشده
چکیده
An easy method for fabricating microand nanofluidic channels, entirely made of a thermally grown silicon dioxide is presented. The nanochannels are up to 1-mm long and have widths and heights down to 200 nm, whereas the microfluidic channels are 20-lm wide and 4.8-lm high. The nanochannels are created at the interface of two silicon wafers. Their fabrication is based on the expansion of growing silicon dioxide and the corresponding reduction in channel cross-section. The embedded silicon dioxide channels were released and are partially freestanding. The transparent and hydrophilic silicon dioxide channel system could be spontaneously filled with aqueous, fluorescent solution. The electrical resistances of the microand nanofluidic channel segments were calculated and the found values were confirmed by current measurements. Electrical field strengths up to 600 V/cm were reached within the nanochannels when applying a potential of only 10 V. Electroosmotic flow (EOF) measurements through microand nanofluidic channel systems resulted in electroosmotic mobilities in the same order of those encountered in regular, fused silica capillaries.
منابع مشابه
Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing.
The design and fabrication of a multilayered polymer micro-nanofluidic chip is described that consists of poly(methylmethacrylate) (PMMA) layers that contain microfluidic channels separated in the vertical direction by polycarbonate (PC) membranes that incorporate an array of nanometre diameter cylindrical pores. The materials are optically transparent to allow inspection of the fluids within t...
متن کاملEffects of Polymer Length and Salt Concentration on the Transport of ssDNA in Nanofluidic Channels.
Electrokinetic phenomena in micro/nanofluidic channels have attracted considerable attention because precise control of molecular transport in liquids is required to optically and electrically capture the behavior of single molecules. However, the detailed mechanisms of polymer transport influenced by electroosmotic flows and electric fields in micro/nanofluidic channels have not yet been eluci...
متن کاملElectroosmotic Flow in Nanofluidic Channels
We report the measurement of electroosmotic mobilities in nanofluidic channels with rectangular cross sections and compare our results with theory. Nanofluidic channels were milled directly into borosilicate glass between two closely spaced microchannels with a focused ion beam instrument, and the nanochannels had half-depths (h) of 27, 54, and 108 nm and the same half-width of 265 nm. We measu...
متن کاملSurface charge, electroosmotic flow and DNA extension in chemically modified thermoplastic nanoslits and nanochannels.
Thermoplastics have become attractive alternatives to glass/quartz for microfluidics, but the realization of thermoplastic nanofluidic devices has been slow in spite of the rather simple fabrication techniques that can be used to produce these devices. This slow transition has in part been attributed to insufficient understanding of surface charge effects on the transport properties of single m...
متن کاملDirect laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration.
We report on the fabrication of nanofluidic channels directly buried in silicate glass with transverse widths down to less than 50 nm using three-dimensional (3D) femtosecond laser direct writing. Using this technique, integrated micro-nanofluidic systems have been produced by simultaneously writing micro- and nanofluidic channels arranged into various 3D configurations in glass substrates. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006